алгоритм дейкстры c-section

Алгоритм Дейкстры
Алгоритм Дейкстры (Dijkstra’s algorithm) — алгоритм на графах, изобретённый нидерландским ученым Э. Дейкстрой в 1959 году. Находит кратчайшее расстояние от одной из вершин графа до всех остальных. Алгоритм работает только для графов без рёбер отрицательного веса. Алгоритм широко применяется в программировании и технологиях, например, его использует протокол OSPF для устранения кольцевых маршрутов. Известен также под названием Сначала Кратчайший Путь (Shortest Path First)
Алгоритм был открыт Элвином Берлекэмпом (англ.) в 1968 году. Алгоритм
Сложность алгоритма Дейкстры зависит от способа нахождения вершины v, а также способа хранения множества непосещенных вершин и способа обновления меток. Обозначим через n количество вершин, а через m — количество ребер в графе G.

В простейшем случае, когда для поиска вершины с минимальным d[v] просматривается все множество вершин, а для хранения величин d — массив, время работы алгоритма есть O(n2 + m). Основной цикл выполняется порядка n раз, в каждом из них на нахождение минимума тратится порядка n операций, плюс количество релаксаций (смен меток), которое не превосходит количества ребер в исходном графе.
Для разреженных графов (то есть таких, для которых m много меньше n²) непосещенные вершины можно хранить в двоичной куче, а в качестве ключа использовать значения d[i], тогда время извлечения вершины из U станет logn, при том, что время модификации d[i] возрастет до logn. Так как цикл выполняется порядка n раз, а количество релаксаций не больше m, скорость работы такой реализации O(nlogn + mlogn)

Если для хранения непосещенных вершин использовать фибоначчиеву кучу, для которой удаление происходит в среднем за O(logn), а уменьшение значения в среднем за O(1), то время работы алгоритма составит O(nlogn + m). Граф схема алгоритма Дейкстры Реализация алгоритма Дейкстры на С++ Реализацию алгоритма смотрите здесь Вывод по алгоритму Дейкстры
В простейшей реализации для хранения чисел d[i] можно использовать массив чисел, а для хранения принадлежности элемента множеству U — массив булевых переменных.
В начале алгоритма расстояние для начальной вершины полагается равным нулю, а все остальные расстояния заполняются большим положительным числом (бо́льшим максимального возможного пути в графе). Массив флагов заполняется нулями. Затем запускается основной цикл.
На каждом шаге цикла мы ищем вершину с минимальным расстоянием и флагом равным нулю. Затем мы устанавливаем в ней флаг в 1 и проверяем все соседние с ней вершины. Если в ней расстояние больше, чем сумма расстояния до текущей вершины и длины ребра, то уменьшаем его. Цикл завершается когда флаги всех вершин становятся равны 1, либо когда у всех вершин c флагом 0 d[i] = бесконечность. Последний случай возможен тогда и только тогда, когда граф G не связан.

алгоритм дейкстры с кучей

алгоритм дейкстры c-diff bacteria infection

Алгори́тм Де́йкстры (англ. Dijkstra’s algorithm) — алгоритм на графах, изобретённый нидерландским учёным Эдсгером Дейкстрой в 1959 году. Находит кратчайшие пути от одной из вершин графа до всех остальных.

Читать

алгоритм дейкстры c spire

Определение дерева кратчайших путей по алгоритму Дейкстры. Поиск деревьев на графе. курсовая работа [625,4 K], добавлен 30.09.2014.