на вход алгоритма подается натуральное число n

Нахождение НОД и НОК Разложение числа на простые множители Сравнения по модулю Операции над множествами Операции над векторами Разложение вектора по базису. Доказательство, что векторы образуют базис Чертёж треугольника по координатам вершин Решение треугольника Решение Пирамиды Построение Пирамиды по координатам вершин Чертёж многоугольника по координатам вершин Решение систем методом Крамера и Матричным Онлайн построение графика кривой 2-го порядка Определение вида кривой или поверхности 2-го порядка по инвариантам МНК и регрессионный анализ Онлайн + графики
Алгоритмы JavaScript
Логика предикатов Логические операции над предикатами Кванторные операции над предикатами Формулы логики предикатов Тавтологии логики предикатов Преобразования формул и следование их предикатов Проблемы разрешения для общезначимости и выполнимости формул Применение логики предикатов в математике Строение математических теорем Аристотелева силлогистика и методы рассуждений Принцип полной дизъюнкции в предикатной форме Метод полной математической индукции Необходимые и достаточные условия Логика предикатов и алгебра множеств Формализованное исчисление предикатов Неформальные и формаль-
ные аксиоматические теории
Конечные автоматы и регулярные языки Алфавит, слово, язык в программировании Порождающие грамматики (грамматики Хомского) Классификация грамматик и языков Регулярные языки и регулярные выражения Конечные автоматы Допустимость языка конечным автоматом Теорема Клини Детерминизация конечных автоматов Минимизация конечных автоматов Лемма о разрастании для регулярных языков Обоснование алгоритма детерминизации автоматов Конечные автоматы с выходом Морфизмы и конечные подстановки Машины Тьюринга Контекстно-свободные языки
Контекстно-свободные языки и грамматики Приведенная форма КС-грамматики Лемма о разрастании для КС-языков Магазинные автоматы (автомат с магазинной памятью) Алгоритм построения МП-автомата по КС-грамматике Алгоритм построения КС-грамматики по МП-автомату Алгебраические свойства КС-языков Основное свойство суперпозиции КС-языков Пересечение контекстно-свободных языков Методы синтаксического анализа КС-языков Восходящий синтаксический анализ и LR(k)-грамматики Семантика формальных языков Принцип индукции по неподвижной точке Графовое представление МП-автоматов
Интегральное исчисление
Неопределенный и определенный интегралы Свойства интегралов Интегрирование по частям Интегрирование методом замены переменной Интегрирование различных рациональных функций Интегрирование различных иррациональных функций Интегрирование различных тригонометрических функций Определенный интеграл и его основные свойства Необходимое и достаточное условие интегрируемости Теоремы существования первообразной Свойства определенных интегралов Несобственные интегралы Интегральное определение логарифмической функции Приложения интегралов

Инвестиции: экономическая сущность и классификация Государственное регулирование инвестиционной деятельности Источники финансовых ресурсов на капитальные вложения Инвестиции в основные фонды Оценка состояния основных фондов Амортизация основных фондов Капитальное строительство в инвестиционном процессе Планирование инвестиций в форме капитальных вложений Экономическая эффективность инвестиций Финансирование капитальных вложений Кредитование капитальных вложений Кредитоспособность Финансирование и кредитование затрат Финансирование и кредитование инвестиционной деятельности потребительской кооперации Финансирование и кредитование капитальных вложений потребительской кооперации Инвестиционное строительное проектирование Анализ инвестиций
Концепция построения международных стандартов финансовой отчетности (МСФО) Экономическое содержание международных стандартов финансовой отчётности Цели и принципы оценки стоимости акций и активов компании Оценка акций и активов предприятия по справедливой стоимости Методы оценки справедливой стоимости акций предприятия Затратный подход к оценки стоимости компаний и акций Сравнительный подход к оценки стоимости предприятий и акций Доходный подход к оценке стоимости компании и акций Выбор ставки дисконтирования при инвестировании в акции Метод капитализации прибыли Сравнение подходов к оценке стоимости компаний и пакетов акций Форвардные контракты
Метрические понятия и аксиомы геометрии Равенство и подобие геометрических фигур Бинарные отношения Вектор, его направление и длина Линейные операции над векторами Линейная зависимость и независимость векторов Отношение коллинеарных векторов Проекции векторов на прямую и на плоскость Угол между векторами Ортогональные проекции векторов Координата вектора на прямой и базис Координаты вектора на плоскости и базис Координаты вектора в пространстве и базис Операции над векторами в координатной форме Ортогональный и ортонормированный базисы Cкалярное произведение векторов и его свойства Выражение скалярного произведения через координаты векторов Векторное произведение векторов и его свойства Смешанное произведение векторов и его свойства Ориентированные площади и объемы Двойное векторное произведение и его свойства Применение векторов в задачах на аффинные свойства фигур Применение произведений векторов при решении геометрических задач Применение векторной алгебры в механике Системы координат

Алгебраические линии на плоскости Общие уравнения геометрических мест точек Алгебраические уравнения линий на плоскости Уравнения прямой, проходящей через точку перпендикулярно вектору Уравнения прямой, проходящей через точку коллинеарно вектору Уравнения прямой, проходящей через две точки Уравнения прямой с угловым коэффициентом Взаимное расположение прямых Примеры задач с прямыми на плоскости Системы неравенств с двумя неизвестными Системы линейных уравнений с двумя неизвестными Линии 2-го порядка
Евклидовы пространства Ортогональные векторы евклидова пространства Ортогональный базис евклидова пространства Ортонормированный базис евклидова пространства Ортогональные дополнения в евклидовом пространстве Задача о перпендикуляре Матрица и определитель Грама и его свойства Линейные преобразования евклидовых пространств Канонический вид ортогонального оператора евклидова пространства Сопряженные операторы евклидова пространства Самосопряженные операторы евклидова пространства Приведение квадратичной формы к главным осям Унитарные пространства и их линейные преобразования
Комплексный анализ
Интуитивное представление об алгоритмах
Общее понятие алгоритма
Понятие алгоритма стихийно формировалось с древнейших времен. Современный человек понимает под алгоритмом четкую систему инструкций о выполнении в определенном порядке некоторых действий для решения всех задач какого-то данного класса.
Многочисленные и разнообразные алгоритмы окружают нас буквально во всех сферах жизни и деятельности. Многие наши действия доведены до бессознательного автоматизма, мы порой и не осознаем, что они регламентированы определенным алгоритмом — четкой системой инструкций. Например, наши действия при входе в магазин "Универсам" (сдать свою сумку, получить корзину с номером, пройти в торговый зал, заполнить корзину продуктами, оплатить покупку в кассе, предъявить чек контролеру, взять свою сумку, переложить в нее продукты, сдать корзину, покинуть магазин). Второй пример — приготовление манной каши (500 мл молока довести до кипения, при тщательном помешивании засыпать 100 г манной крупы, при помешивании довести до кипения и варить 10 минут). Автоматизм выполнения этих и многих других действий не позволяет нам осознавать их алгоритмическую сущность.
Но есть немало таких действий, выполняя которые, мы тщательно следуем той или иной инструкции. Это главным образом непривычные действия, профессионально не свойственные нам. Например, если вы фотографируете один-два раза в год, то, купив проявитель для пленки, будете весьма тщательно следовать инструкции (алгоритму) по его приготовлению: "Содержимое большого пакета растворить в 350 мл воды при температуре 18— 20 °С. Там же растворить содержимое малого пакета. Объем раствора довести до 500 мл. Раствор профильтровать. Проявлять 3—4 роликовых фотопленки". Второй пример: если вы никогда раньше не пекли торт, то, получив рецепт (алгоритм) его приготовления, постараетесь выполнить в указанной последовательности все его предписания.
Большое количество алгоритмов встречается при изучении математики буквально с первых классов школы. Это прежде всего алгоритмы выполнения четырех арифметических действий над различными числами — натуральными, целыми, дробными, комплексными. Вот пример такого алгоритма: "Чтобы из одной десятичной дроби вычесть другую, надо: 1) уравнять число знаков после запятой в уменьшаемом и вычитаемом; 2) записать вычитаемое под уменьшаемым так, чтобы запятая оказалась под запятой; 3) произвести вычитание так, как вычитают натуральные числа; 4) поставить в полученной разности запятую под запятыми в уменьшаемом и вычитаемом".
Вот пример алгоритма сложения приближенных чисел. Найти сумму чисел и , где и .
1. Выделим слагаемое с наименьшим числом десятичных знаков. Таким слагаемым является число 7,45 (два десятичных знака).
2. Округлим остальные слагаемые, оставляя в них столько десятичных знаков, сколько их имеется в выделенном слагаемом: .
3. Выполним сложение приближенных значений чисел: .
Итак, .
Немало алгоритмов в геометрии: алгоритмы геометрических построений с помощью циркуля и линейки (деление пополам отрезка и угла, опускание и восстановление перпендикуляров, проведение параллельных прямых), алгоритмы вычисления площадей и объемов различных геометрических фигур и тел.
При изучении математики в вузе были освоены процедуры вычисления наибольшего общего делителя двух натуральных чисел (алгоритм Евклида), определителей различных порядков, рангов матриц с рациональными элементами, интегралов от рациональных функций, приближенных значений корней уравнений и систем и т.д. Все эти процедуры являются не чем иным, как алгоритмами. Наконец, в изучаемом курсе математической логики были рассмотрены алгоритмы разрешимости формализованного исчисле

на вход алгоритма подаётся натуральное число n

на вход алгоритма подается натуральное число

Студентам: задачи с решениями, справочник по высшей математике, консультации. Преподавателям: размещение методических разработок. Книги по Mathcad, Matlab, Maple, Statistica. Ссылки. Софт.

Читать

Несколько более сложные примеры _ алгоритм Евклида для нахождения наибольшего общего делителя двух натуральных чисел  Схематическое изображение алгоритма. На вход подается информация или объект, подлежащий обработке, например

8. На вход программе подаются два натуральных числа n, m ≤ 109. Выведите их наибольший общий делитель. Для решения задачи используйте алгоритм Евклида, основанный на следующем тождестве: НОД (n, m) = НОД (m, r), где r